The orthogonal linear components of the variables in the next largest direction of variance.
basis_pca(data, d = 2)
Numeric matrix or data.frame of the observations.
Number of dimensions in the projection space.
Other basis producing functions:
basis_guided()
,
basis_half_circle()
,
basis_odp()
,
basis_olda()
,
basis_onpp()
dat_std <- scale_sd(wine[, 2:6])
basis_pca(data = dat_std)
#> PC1 PC2
#> Alcohol 0.09339195 0.6578986
#> Malic 0.42873573 -0.1335841
#> Ash 0.65072062 0.1843494
#> Alcalinity 0.57844161 -0.4342966
#> Magnesium 0.22233218 0.5715999