The wine dataset contains the results of a chemical analysis of wines grown in a specific area of Italy. Three types of wine are represented in the 178 samples, with the results of 13 chemical analyses recorded for each sample. The Type variable has been transformed into a categorical variable.
wine
A data frame of 178 observations of target
class Type
and 12 numeric variables:
Type, The type of wine, the target factor, 1 (59 obs), 2(71 obs), and 3 (48 obs).
Alcohol, Alcohol
Malic, Malic acid
Ash, Ash
Alcalinity, Alcalinity of ash
Magnesium, Magnesium
Phenols, Total phenols
Flavanoids, Flavanoids
Nonflavanoids, Nonflavanoid phenols
Proanthocyanins, Proanthocyanins
Color, Color intensity
Hue, Hue
Dilution, D280/OD315 of diluted wines
Proline, Proline
rattle, R package. G. Williams, 2020. rattle: Graphical User Interface for Data Science in R https://CRAN.R-project.org/package=rattle
PARVUS. M. Forina. et al. 1988. Elsevier, Amsterdam, PARVUS: An extendable package of programs for data exploration, classification and correlation. ISBN 0-44-430121z
The data contains no missing values and consist of only numeric data, with a three class target variable (Type) for classification.
Replicating this dataset:
library(spinifex)
str(wine)
#> 'data.frame': 178 obs. of 14 variables:
#> $ Type : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Alcohol : num 14.2 13.2 13.2 14.4 13.2 ...
#> $ Malic : num 1.71 1.78 2.36 1.95 2.59 1.76 1.87 2.15 1.64 1.35 ...
#> $ Ash : num 2.43 2.14 2.67 2.5 2.87 2.45 2.45 2.61 2.17 2.27 ...
#> $ Alcalinity : num 15.6 11.2 18.6 16.8 21 15.2 14.6 17.6 14 16 ...
#> $ Magnesium : int 127 100 101 113 118 112 96 121 97 98 ...
#> $ Phenols : num 2.8 2.65 2.8 3.85 2.8 3.27 2.5 2.6 2.8 2.98 ...
#> $ Flavanoids : num 3.06 2.76 3.24 3.49 2.69 3.39 2.52 2.51 2.98 3.15 ...
#> $ Nonflavanoids : num 0.28 0.26 0.3 0.24 0.39 0.34 0.3 0.31 0.29 0.22 ...
#> $ Proanthocyanins: num 2.29 1.28 2.81 2.18 1.82 1.97 1.98 1.25 1.98 1.85 ...
#> $ Color : num 5.64 4.38 5.68 7.8 4.32 6.75 5.25 5.05 5.2 7.22 ...
#> $ Hue : num 1.04 1.05 1.03 0.86 1.04 1.05 1.02 1.06 1.08 1.01 ...
#> $ Dilution : num 3.92 3.4 3.17 3.45 2.93 2.85 3.58 3.58 2.85 3.55 ...
#> $ Proline : int 1065 1050 1185 1480 735 1450 1290 1295 1045 1045 ...
dat <- scale_sd(wine[, 2:6])
clas <- wine$Type
bas <- basis_pca(dat)
mv <- manip_var_of(bas)
mt <- manual_tour(bas, mv)
ggt <- ggtour(mt, dat, angle = .2) +
proto_default(aes_args = list(color = clas, shape = clas))
# \donttest{
animate_plotly(ggt)
# }